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Abstract—Cyberbullying has become a pressing societal chal-
lenge in the era of digital communication. Cyberbullying lan-
guage is often part of a longer conversation that involves
bystander roles. While incorporating additional contextual in-
formation—such as bystander replies—offers a more realistic
and effective strategy for identifying instances of cyberbullying,
most current studies are limited by their reliance on interpret-
ing standalone Tweets. In this work, we explore fine-grained
cyberbullying detection using bystander information through
a chained model. However, sequential classification in chained
models is prone to error propagation, where errors in earlier
layers negatively affect the training and predictions in subsequent
layers. Studies primarily focus on optimizing the chain classifier
by developing strategies for selecting the optimal labels ordering.
To improve the chained model with the pre-specified order as
in our approach, it is crucial to enhance the reliability of the
earlier layers to mitigate error propagation. This paper addresses
this issue by incorporating a filter layer that determines the
optimal threshold based on confidence and permissible error.
This approach ensures that only predictions above the specified
threshold are considered confident and carried over for use in the
next layer of the chain. The results demonstrate that, using the
Confident subset to train the upper classifier in the chain offers
a distinct advantage over the standard chain model.

Index Terms—cyberbullying, bystander, chain, confidence, de-
tection

I. INTRODUCTION

Cyberbullying involves real-world situations with multiple
events initiated by a group. In social network sites, the events
interpreted inform of main post by the first author and the
replies by the bystander. Bystander roles can be categorized
as Instigators, Impartials, Defenders, and Others as defined
in [[1]. To address the risks associated with cyberbullying,
increasing attention has been directed toward the development
of automated detection models. While these efforts have led
to the creation of numerous models, most of them are limited
by their reliance on interpreting standalone Tweets. This
approach can be particularly challenging when the Tweet is
part of a longer conversation. Incorporating additional contex-
tual information—such as bystander replies within ongoing
conversations—offers a more realistic and effective strategy
for identifying instances of cyberbullying.

2" Syaheerah Lebai Lutfi

Dept of Medical Education & Medical Informatics

Sultan Qaboos University
Sultanate of Oman
School of Computer Sciences
Universiti Sains Malaysia
Penang, Malaysia
0000-0001-7349-0061

Identifying the roles of bystander in conversation threads is
crucial for enhancing the fine-grained cyberbulying detection.
Research suggests using multi-labels learning approaches,
which explicitly consider label interdependence, generally
results in better predictive performance [2], [3].

Cyber-aggression is defined as aggressive behavior intended
to cause harm to a person (e.g., name-calling by an anonymous
online user). Cyberbullying is defined as frequent aggressive
behavior carried out electronically by a person or a group of
people, aimed at inflicting harm on a person who cannot easily
fight back, creating a power imbalance in which the bully has
power over the victim [4]-[7]. Using the above definitions,
we explore frequency and power imbalance are distinguishing
characteristics that differentiate cyberbullying instances from
cyber-aggression. Identifying bystander roles can help distin-
guish between cyber-aggression and cyberbullying. Bystander
behaviors often reveal severity, frequency, and power dynamics
of the interaction. For example, the presence of instigating
bystanders may indicate frequent harm, and may also signal a
power imbalance where the victim is unsupported.

Multi-label Classification (MLC) is a type of supervised
learning problem where each instance can be linked to multi-
labels. MLC captures the attention of Machine Learning
researchers due to its applicability to a wide variety of appli-
cations, such as text classification [8]], emotion recognition [9]],
bank marketing [[10]], acoustic event detection [[11], and multi-
disease risk prediction [[12]]. The difference between MLC
and Single-label Classification (SLC) is that MLC predicts
multiple labels, whereas the conventional task of SLC involves
predicting just one class label. The SLC and MLC can be
either binary or multiclass, depending on the number of classes
involved in the classification task.

MLC problems can be solved by one of two approaches:
algorithm adaptation or problem transformation. Algorithm
adaptation is the most straightforward method that modifies
SLC methods to be suitable for multi-label problems. The
problem transformation method, on the other hand, trans-
forms the multi-label problem into one or more single-label
classification problems [2]. Problem transformation method



has two popular ways - Classifiers Chain (CC) or Binary
Relevance. Binary Relevance is the more common approach
due to its simplicity; it independently trains a binary classifier
for each label, overlooking the explicit interaction among
events. On the other hand, the CC method employs multiple
SLC classifiers equal to the number of labels, with each
trained for a specific label. To perform classification for a new
instance, CC begins by predicting the value of the first label.
Then, it takes this instance together with the predicted value
as the input to predict the value of the next label. This process
continues until the final label is predicted [3]]. The CC model
is widely adopted and popular for its ability to address label
dependency, simplicity, and promising experimental results.

CC performance suffers from error propagation problems
[13]], meaning that errors generated by earlier classifiers can
propagate to subsequent classifiers in the chain, leading to
additional errors. To reduce the influence of error propagation
issues, this research proposes a Trustworthy Classifiers Chain
by adding the proposed filter layer. This layer optimizes model
performance and limits error propagation by managing both
confidence and error.

In Section [l we provide an overview of the existing
studies enhancing the Classifiers Chain model. The proposed
Classifiers Chain model is introduced in Section [I[-Bl In
Section we present the implementation of the system.
The results of our work are discussed in Section while
Section [V] provides directions for future work and concludes
the paper.

II. BACKGROUND AND RELATED WORK

Machine Learning researchers are actively working to mit-
igate the limitations of CC while preserving its high perfor-
mance for complex multi-label problems. CC performance is
affected by label ordering because different Classifiers Chains
involve different numbers of various classifiers trained on
different training sets [2[], [3]], [14].

The enhancement of Classifiers Chains (CC) was initiated
by [3], who introduced an ensemble Classifiers Chain to
average the multi-label predictions of CC over a set of
random chain orderings in order to obtain the optimal label
ordering and limit the issue of error propagation. However, the
sequence of labels still suffers from strong randomness, which
remains a challenge among researchers. As a result, there has
been a growing body of work focused on implementing and
improving the multi-label Classifiers Chain method by more
effectively modeling label correlations, as outlined in Table
For example, in [15], an label ordering approach based on label
dependence measurement strategy was proposed for improving
multi-label Classifiers Chain accuracy. The proposed approach
is based on mining of the correlation information and asso-
ciation rules from frequent pattern between labels itemsets.
In the process of mining association rules, strong rules are
identified into account to meet both the minimum support
and lift in addition to confidence thresholds. Then a directed
acyclic graph is constructed to obtain the learning order of
labels arranged to train each classifier. Similarly, [16] utilized

a Bayesian network based on conditional entropy to model
the dependency of each label on other labels. A modified
scoring function, incorporating both the dependency degree
and a complexity penalization term, is then used to assess the
quality of the Bayesian network and the resulting label order.

To address the problem of random label sequence ordering,
which can lead to error propagation, the authors of [17]]
proposed a hybrid optimization strategy. A genetic algorithm
performs a global search over possible label orders, while
swarm optimization techniques refine these orders to iden-
tify the optimal sequence. Their proposed method slightly
improved the predictive performance of the chain classifier
against standard CC and Binary Relevance methods. As one
of the pioneers of research in this area, [18] aimed to ex-
ploit the correlation between all the dataset’s labels using
Jaccard index for the first iteration and pairwise measure
for the rest of iterations. They then applied the ensemble
CC model to the ordered subsets of labels. Their approach
utilizes deep Classifiers Chains, specifically BERT models,
each responsible for predicting the associated set of labels.
The issue with ensemble CC related to majority voting is that
it overlooks the possibility that some minority learners may
produce more accurate outputs, as it does not explicitly address
diversity. To overcome these limitations, [[19] proposed a chain
of SVM learners employing a tournament voting approach,
where classifier outcomes compete in groups until one winner
remains. They construct training sets using mutual information
measures to assess and prioritize data features in relation to
the target class variable, retaining only the most significant
ones.

In contrast to studies that focus solely on optimizing chain-
ing orders, some research enhances the standard chaining al-
gorithm through different approaches. For instance, the multi-
dimensional classification problem is addressed by creating
a chain of binary classifiers with one-vs-one (OvO) decom-
position [20]. Since the chosen label order influences the
performance of CC, this effect is minimized by constructing
ensembles of CCs with various orders and combining their
predictions using majority voting. Additionally, instead of
training all classifiers on the same dataset, it is beneficial to
train each CC on a distinct dataset to enhance the diversity
of base learners. Furthermore, the authors in [21]] incorpo-
rated flexibility by using different classifiers within a chain
structure. They employed a range of multi-output classification
algorithms, such as Random Forest (RF), Decision Trees (DT),
and K-Nearest Neighbors (KNN). Their experimental results
indicate that their proposed model, using various classifiers,
achieved the second-highest overall accuracy among all mod-
els and outperformed standard chain-based models in terms of
overall accuracy. The authors in [22] handled uncertain labels
through two different approaches: the first approach considers
all potential scenarios to avoid propagating early uncertain
decisions, while the latter approach marginalizes these labels
in the predictive model. The study found that as more labels
were missing, the accuracy improved.

With the exception of [22], the reviewed studies have



estimated the uncertainty in chain classifiers with the aim
of discovering label correlations and determining the optimal
order of labels within the chain. The model proposed by [22]]
computes the overall uncertainty for each label and marginal-
izes the labels with the highest uncertainty. This method
simplifies the prediction process by excluding uncertain labels
from direct consideration in the predictive model, thereby
avoiding the propagation of uncertainty through the chain
and reducing its impact on subsequent labels. However, this
approach is not effective for classification problems with a
limited number of labels. To improve the chained model with
the limited number of labels that pre-specified in order as in
our approach, it is crucial to enhance the reliability of the
earlier classification stage to mitigate error propagation.

TABLE I
OVERVIEW OF THE STATE-OF-THE-ART CHAIN CLASSIFIERS USED IN
VARIOUS FIELDS

Source Research Problem Approach

[ 115] Optimal labels ordering Acyclic graph of rules

I 122] Optimal labels ordering Uncertainty estimation by a con-
vex sets distributions

I 116] Optimal labels ordering Acyclic Bayesian network based
on conditional entropy

I 17) Optimal labels ordering Particle swarm optimization and
a genetic algorithm

18] Optimal labels ordering Labels correlation by Jaccard in-
dex and pairwise measure

[ 119] Optimal labels ordering Chain of SVM learners with a
tournament voting approach

[ 120] Enhances the standard cc Ensembles of ccs with binary
classifiers ~ with  one-vs-one
(OvO) decomposition

I 121] Enhances the standard CC Using different classifiers within
a chain

III. METHODOLOGY
A. Data Collection

Cyberbullying typically occurs within interactions among
multiple individuals, leading to harassment and controversial
content. The first person might initiate cyberbullying through a
parent post, while bystander escalate it by replying with child
posts. Since a standalone post viewed in isolation may not
reveal the presence of cyberbullying, it is essential to gather
such instances from entire conversation threads that include
both the main post and subsequent replies from bystander.
Thus, the dataset used was collected from the X social
networking site, totaling 13,309 Tweets, consisting of 2,799
threads and 10,510 replies. Users on this platform post Tweets
that bystander can reply to, forming a thread.

We collaborated with three experts, each of these experts
holds a PhD. They have extensive research experience in
various fields, including psychology, organizational behavior,
emotional intelligence, and cyberbullying. They understand the
difference between cyber-aggression and cyberbullying, but
their task was limited to labeling bystander roles and then
determining the cyberbullying severity.

The dataset, known as CYBY?24, is annotated with two
types of labels - the bystander role label and the fine-grained
cyberbullying label. The latter is only done for the main post.
The labels were defined as follows:

o Fine-grained cyberbullying label with multi-classes cor-

responding to the 4-point scale (0-1-2-3):
Normal
Aggression (not bullying)
Bullying with low aggression
Bullying with high aggression

« bystander roles label with multi-classes:

— Instigators who agree with the thread author of the
main post topic.
— Defenders who disagree with the thread topic and
who exhibit a defensive manner.
— Impartials who remain neutral or passive.
— Others whose post consent is not related to the thread
topic.
As indicated in Table [[I, a “Normal” discussion thread, users
often use online slang words like “trash” and “sucks” to
express their opinions about games and to convey personal
views. It can be observed that including bystander replies is
important for accurately interpreting the intended meaning,
and this feature could also help in better distinguishing be-
tween different contexts.

The Fleiss’ kappa reliability scores were 0.88 for the by-
stander role labeling and 0.92 for the fine-grained labeling of
cyberbullying, which indicates substantial agreement between
experts.

B. fine-grained cyberbullying detection model

In the chained classification model proposed by [1f, mis-
classifications in bystander roles in the first layer might lead
to incorrect contextual information being passed to the cy-
berbullying detection layer, resulting in reduced accuracy and
reliability of the overall model. Most earlier studies address
this issue by determining the optimal order of the chain.
However, in our study we deal with a pre-specified ordering
of two labels, the ordering aligns with the data analysis
perspective that bystander play an important role in grading
the severity of cyberbullying events. So, in this research we
propose filter layer to filter the predictions of the first layer to
retain only those instances with high confidence.

The proposed fine-grained cyberbullying detection model
employs a sequential classification approach that leverages
bystander roles information to improve detection accuracy. It
comprises three key processes: (1) a transfer learning approach
based on a pre-trained BERT model for identifying bystander
roles, (2) a proposed filter layer designed to reduce error
propagation by retaining only the instances with a confidence
score greater than or equal to a specified threshold, and
(3) an RNN-based Bidirectional Long Short-Term Memory
(BiLSTM) model for classifying fine-grained cyberbullying.
The model architecture is illustrated in Figure [} and the
following sections provide a detailed explanation of each
component.



TABLE 11
CYBY24 DATASET: EXAMPLE OF ANNOTATIONS FOR SOME CATEGORIES

Reply_ID Tweet Text Bystander Cyberbullying
Roles Classes
16221 main tweet: The best indicator of racism is if someone likes college
basketball over the NBA.
16221 reply 1: Yup. Check. Important. Instigator Normal thread
16221 reply 2: NBA is trash compared to college. Just like the NFL. Defender
16221 reply 3: I'm not very knowledgeable about basketball. Impartial
16221 reply 4: NBA has better players (obviously) but overall game structure | Defender
kinda sucks. Too many 3’s, little D, uncalled travels /carries, "hand check”
fouls. I tune out until playoffs.
PN { \ '
Model 1 [, | Bystander | Filter
BERT Rl
Data \ y _
Collection \
"Confident subset” of
g - Bystander Roles Predictions Bystander Roles

Identification Phase

amm T

Fig. 1.

C. Model Implementation

process 1: BERT is trained on the input feature (Tweet text)
and the bystander roles label to identify bystander roles

process 2: Estimating the uncertainty of predictions made
by preceding layer achieved by computing the Maximum
Softmax Probability (MSP) from the distribution of logit
values. A higher MSP indicates greater confidence in the
prediction. Therefore, MSP is often used as a confidence
score to determine how certain the model is about a particular
prediction.

MSP(z;) = max (softmax(z;)) (1)

where:

e (x;) represents the input.
o (z;) represents the logits.

This approach is introduced in the filter layer to select the
predictions that are most likely to be correctly classified. This
selection is based on two factors: first, confidence estimation
functions, which calculate a confidence measure for each pre-
diction based on the logit values; and second, the calculation of
a threshold to filter predictions according to their confidence
scores. Based on this threshold, predictions are categorized
into two subsets: the Confident subset for those predictions that
meet the required confidence level, and the Uncertain subset
for those with lower quality and confidence. The Confident
subset is used to train the next layer in the chain, while the
Uncertain subset is discarded.

The predictions are filtered using specific thresholds. We
define a threshold 7 as a value that consistently produce

Cyberbullying

] Detection Phase
Model 2 Cyberbullying
LSTM ’,’ Classes |
o [ /

Flowchart for Chained Cyberbullying Detection Model

the same confident ratio across different datasets. We utilize
a function that generates a threshold yielding similar error
partitioning. Specifically, a threshold is selected to accepts
only E% of the existing errors. The logits are converted into
predicted labels by applying the softmax function to generate
a probability distribution for each instance, after which the
MSP is computed for each instance. The model compares the
predicted labels to the true labels to identify instances where
the prediction is incorrect. It then creates a list containing
the MSP value and the corresponding error status for each
instance. This list is sorted by MSP values in descending
order. When the number of errors reaches the permissible
rate—allowing only E% of the total errors—the model sets
the MSP threshold to the MSP value of the current instance.
Finally, the predictions are filtered, retaining only those with
MSP values above the threshold, resulting in the Confident
subset.

process 3: BIiLSTM is trained on the input features (re-
ply_id, Tweet text), the Confident subset of the predicted
bystander roles by the first model and the fine-grained cy-
berbullying label to detect the fine-grained cyberbullying.

The sequential chaining method passes label information
between classifiers, allowing the classifier to consider cor-
relations between the labels. A strong correlation between
the labels will give the classifier more predictive power.
Consequently, the proposed chained model is designed to
increase confidence in predictions that will be used for the next
phase. More specifically, it aims to filter out classifications
that are likely to be misclassified, thereby preventing error
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Fig. 2. Zoomed-Out View of the Filter Layer in the Chained Cyberbullying Detection Model

propagation in the sequential classification process.

IV. RESULTS AND DISCUSSION

In this section, we will explain and discuss the results of the
evaluation experiments. We conducted experiments to evaluate
the detection capability of the model without and with adding
the proposed filter layer.

A. Bystander Roles Identification

Table presents the performance of the first stage of
the chained model for bystander role classification, evaluated
without applying the filtering layer following BERT fine-
tuning.

TABLE III
RESULTS OF PRE-TRAINED LEARNING MODELS EXPERIMENTS ON
BYSTANDER ROLES CLASSIFICATION STAGE FOR THE COMPLETE SET OF
CYBY24 DATASET WITH #EPOCH = 20.

Model
fine-tuning BERT

W-Pc+CI
0.91£0.004

W-Re+CI
50.9010.004

W-F1+CI
0.9010.004

Acronyms: W-FI=Weighted-F1, W-Pc=Weighted-Precision,
W-Re=Weighted-Recall, CI=Confidence Interval (95%).

In contrast, Table shows the results when the filtering
layer is applied to the BERT model. For each permissible error
rate (5%, 10%, 15%), it shows the weighted metrics, error rate,
and the confident subset size. Compared to the original results
without filter layer implication indicated in Table[lII} there is a
significant increase across all evaluated metrics. As proposed,
the designed threshold focuses on including instances with a
confidence score greater than or equal to the lowest confidence
score within an acceptable error margin. This aligns with the
proposed method for limiting error propagation by managing
confidence and error. This method optimizes the model’s
performance by determining which predictions are confident
and reliable enough to use for training the next layer and

which to discard. The size of the confident set increases
reasonably with the permissible error rate, which in turn affects
the stability of accuracy. As observed, the F1 score remains
at 0.98 for error rates of 0.05, 0.10, and 0.15, due to the
increase in confident set sizes from 4,235 to 7,587, and then to
9,360, respectively. In all the experiments, the thresholds are
almost the same. This highlights the importance of specifying
the permissible error rate and then selecting the threshold
accordingly, as designed in the proposed method.

TABLE IV
RESULTS OF BERT MODEL EXPERIMENTS WITH FILTER LAYER ON
BYSTANDER ROLES CLASSIFICATION STAGE FOR THE COMPLETE SET OF
CYBY24 DATASET WITH #EPOCH = 10 IN THREE DIFFERENCE
PERMISSIBLE ERROR RATE—ALLOWING ONLY .05, .10, .15 OF THE
TOTAL ERRORS IN THE CONFIDENT SUBSET.

permissible| W-F1 | Confident | Error| Confident| Uncertain

error Threshold | Rate | Subset Subset
size size

.05 0.98 0.99993646 | .015 | 4,235 9,073

.10 0.98 0.9998871 | .016 | 7,587 5,721

15 0.98 0.9998149 | .020 | 9,360 3,948

A.cronyms: W-FI=Weighted-FT.

In the next stage of the chained model, outlined in Section
the confident subset that filtered with an allowable error
rate of 0.15 will be used as input. It is carefully chosen to
ensure it is both reliable and large enough to effectively train
and test the next classification model in the sequence. By using
only high-confidence predictions, we aim to reduce errors and
improve the performance of the next classifier. Allowing for
a small margin of error in the confident subset could help the
model generalize well on unseen data.

B. Fine-grained cyberbullying detection Model with and with-
out the Proposed Filter Layer in the First Classification Phase

The results are shown in Table[V] corresponding to weighted
metrics and the CI metric. The comparison shows that filter



layer positively contributes to the classification score of the
chain model, as the F1 score with the filter layer reaches 0.91,
compared to 0.80 without it. This is because the Confident
subset is used as input attributes during the training and
prediction, whereas in the experiment without the filter layer, a
subset of predicted labels ignoring the confidence estimation
is used. These results demonstrate that, using the Confident
subset to train the upper classifier in the chain offers a distinct
advantage over the standard chain model.

TABLE V
RESULTS ON CYBY24 DATASET: THE PERFORMANCE OF THE CHAINED
FINE-GRAINED CYBERBULLYING DETECTION FOR THE TEST SET, WITH
AND WITHOUT THE PROPOSED FILTER LAYER.

Approach W-Pc+CI W-Re+CI W-F1£+CI Test | Val.
loss | loss

Proposed work | 0.91+0.040 | 0.924+0.040 | 0.91+0.035 | 0.18 | 0.18

using filter

layer

Without filter | 0.7740.030 | 0.8440.026 | 0.80£0.029 | 0.46 | 0.40

layer

Acronyms: W-FI=Weighted-FI, W-Pc=Weighted-Precision,
W-Re=Weighted-Recall, val.=validation.

V. CONCLUSION

The traditional CC method suffers from error propagation,
where misclassifications in earlier stages affect subsequent
predictions. This study aims to enhance the predictive per-
formance of the CC method by addressing the issue of error
propagation. To this end, a filter layer-based technique is
proposed. The filter layer acts as a mechanism to generate
a confident subset from the predictions made in the first
classification phase. This subset is then used in the second
phase, helping to reduce the impact of earlier errors. Ex-
periments were conducted on the CYBY24 dataset, where
the proposed method achieved a best overall Fl-score of
0.91, compared to 0.80 in the standard chain model. Future
work will test the approach on new multi-label datasets and
refine the architecture and uncertainty estimation techniques
to improve reliability.

DATA AVAILABILITY

The corpus is useful for the research on leveraging bystander
for cyberbullying detection, so it is made publicly available
at  |https://www.kaggle.com/datasets/sllresearchgroup/cyber-
bystander-role-labelled-dataset-cyby24
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