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Abstract. Accurate diagnosis through MRI is the main non-invasive method in 

the diagnosis of PCas through manual segmentation of the prostate lesion. This 

process is time-consuming and prone to interreader variability. Deep learning-

based image processing has emerged as a solution to the problem. However, most 

deep-learning-based approaches in prostate lesion segmentation use a one-step 

direct lesion segmentation approach, which may cause the model to learn from 

unnecessary inputs that could contribute to noise. To address this problem, some 

researchers suggested introducing prior prostate anatomical knowledge using a 

two-step approach that involves segmenting the prostate gland and using the ex-

tracted prostate gland as the input for the lesion segmentation model. Despite 

demonstrating high performance in lesion segmentation, there remains a lack of 

systematic comparative studies that quantify its practical advantages using stand-

ardised metrics, consistent architectures, and the same dataset. In this study, a 

comparative evaluation of one-step and two-step approaches in prostate lesion 

segmentation was conducted using the benchmark dataset Prostate158 with 

DeepLabV3, U-net, TransUNet, and TransAttUnet. The findings reveal that all 

four models with the two-step approach achieve significantly higher results rela-

tive to the one-step approach, with a percentage increase of 160.0%, 105.4%, 

100.6%, and 68.1% for DeepLabV3, U-net, TransUNet, and TransAttUnet, re-

spectively. However, the sequential dependencies of the two-step approach may 

also introduce error propagation and inconsistent results.  
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mentation 

1 Introduction 

As one of the most common and lethal cancers affecting men worldwide, early detec-

tion and effective diagnosis of prostate cancer (PCa) are critical for deciding the most 

appropriate medical treatment. Magnetic Resonance Imaging (MRI) plays a vital role 



in helping medical experts diagnose PCas by providing a non-invasive, clear internal 

body structure. This allows the experts to visually distinguish and segment the region 

of the prostate affected by the disease, commonly known as prostate lesions. However, 

the manual segmentation of MRI images is time-consuming and prone to interreader 

variability, leading to inconsistencies in diagnosis [1].  

To address this issue, Computer-aided Diagnosis (CAD) that utilises computational 

or traditional machine learning algorithms to handle segmentation of prostate lesions is 

proposed [2]. In this context, various deep-learning approaches are at the forefront of 

innovation. Deep learning (DL) provides a non-biased yet robust CAD method in the 

clinical workflow. Various deep learning architectures, such as Convolutional Neural 

Networks (CNN), Transformer, and CNN-Transformer hybrids, are promising solu-

tions that allow them to capture local or global image feature representation [3].  

Despite their advantages, DL approaches mostly use a single-step, direct lesion/tu-

mour segmentation method, which may require the models to learn additional parame-

ters to ensure a good performance for lesion localisation and segmentation. Recently, 

researchers have suggested incorporating prior anatomical knowledge of the prostate 

zones/gland to benefit and aid in model learning. [4]. However, there is a lack of re-

search that directly studies the performance difference between two different models, 

incorporating prior anatomical knowledge and models that learn from scratch. This 

study aims to address the gap and to provide a quantitative analysis and comparison 

between the single and two-step approaches in lesion segmentation using the same 

model architecture, dataset, and performance metrics. 

2 Related Works 

2.1 Background and DL models on Prostate Image Segmentation 

The traditional image-based method of diagnosis and determination of PCa lesions 

through MRI is performed by manual segmentation. However, such a method requires 

human expert knowledge and labour,  making it time-consuming while suffering from 

interreader/interobserver variability even among highly knowledgeable experts [1]. 

Various computational algorithms for image segmentation have been employed. This 

includes classical computer vision techniques such as active contour models [5] and 

also machine learning algorithms [2]. However, due to the multi-sliced nature of MRI 

images, these techniques faced limitations in maintaining the consistency of the seg-

mentation, resulting in relatively lower segmentation accuracy [2, 5]. The use of DL 

models demonstrates the possibility of getting the computer to perform the segmenta-

tion tasks, which effectively eliminates the subjectivity of humans. 

U-net is a DL model designed for the image segmentation task [6]. U-net incorpo-

rates an encoder-decoder architecture where the encoder is responsible for feature 

learning while the decoder is responsible for restoring spatial information lost during 

encoding. Skip connections from the encoder to the decoder are built by concatenating 

feature maps from the early stage to the later stage to preserve both low and high-level 

detail information. [3]. Another CNN segmentation model includes DeepLabV3, which 

introduced a more advanced method known as Atrous Spatial Pyramid Pooling (ASPP) 



to apply Atrous Convolution (AC) in a parallel manner with different dilation rates, 

enabling the model to understand the context at different scales [7]. 

Recent architectures that use the transformer encoder have also been used in this task 

[8]. For instance, the Swin-UNETR model uses a Swin Transformer as the encoder to 

learn features from non-overlapping 3D patches of MRI data using shifted windows 

and passes it to a CNN decoder [9]. Another architecture is the TransUNet proposed in 

[10]. TransUNet incorporates CNN as the encoder backbones to capture the local fea-

ture representation and pass the learned feature maps to the transformer encoder for 

learning global feature representation. Another similar U-based CNN-Transformer hy-

brid model is TransAttUnet by [11]. It also uses a CNN backbone and passes the fea-

tures captured to two different transformer modules, which are Transformer Self-At-

tention (TSA) and Global Spatial Attention (GSA), for multiscale feature extraction. 

Another model, known as the Segment Anything Model (SAM), was developed by 

the team MetaAI [12] that incorporates user prompts in the form of points or boxes to 

specify the exact region for the segmentation target to enhance the model's flexibility 

and zero-shot generalisation. Later research [13] reported that the SAM can be fine-

tuned for medical image segmentation. However, the model was optimised by taking 

the user prompt, which may pose challenges in implementing the model in the auto-

mated workflow. Table 1 below presents a summary of the DL architectures reviewed. 

Table 1. Summary of the DL models on lesion segmentation 

Experimented 

Model 

Dataset Segmentation 

Scope  

Score  

U-net [14] Private dataset of 40 

patients’ MRI images 

Prostate lesion  91.76 DSC 

DeepLabV3 [15] Private dataset of 50 

patients’ pelvic MRI  

Prostate lesion  73.97 IOU 

Swin-UNETR [16] PICAI  Prostate lesion  0.762 PICAI 

score  

TransUNet [10] ADC MRI on pelvic* Pelvic organ  88.27 DSC  

TransAttUnet [3] Clean-CC-CCII* Pelvic organ  86.57 DSC 

MedSAM [13] Internal validation of 

the prostate MRI da-

taset 

Pelvic lesion  97.2 DSC 

2.2 Basics and Gap Analysis on the Two-Step Approach 

As mentioned in the section above, most of these deep learning approaches in prostate 

lesion segmentation only involve the direct lesion segmentation step. The sequential, 

two-stage strategy is specifically designed to overcome inherent challenges in direct, 

end-to-end lesion segmentation, particularly due to the difficulty posed by the small 

size of prostate lesions relative to the entire MRI image by introducing prior anatomical 

knowledge to the model. By accurately localising the prostate first, the search space for 

lesions is drastically reduced, leading to improved computational efficiency and en-

hanced accuracy in lesion detection [17]. The rationale for this approach is inspired by 



the conventional radiologist's clinical workflow in manual segmentation of the lesion. 

The approach attempts to emulate how radiologists manually delineate the prostate 

gland in their minds before searching for the lesions within it [4]. By introducing the 

prostate gland region into the model, the model can focus its learning and inference on 

a much smaller, more relevant anatomical area. This approach is similar to the action 

of central cropping that crops out the important region of interest (ROI) of the prostate 

for the machine/deep learning model to focus on segmenting the region within it, effec-

tively reducing false positives outside the prostate and improving the signal-to-noise 

ratio for lesion detection [18]. But instead of cropping a central region, this approach 

performs a "smart cropping" mechanism that only perfectly fits the whole prostate 

gland while eliminating other pixels that are outside the prostate gland segment bound-

ary. Table 2 summarises the attempts at the experiments in a two-step approach.  

Table 2. Summary of past works on the two-step lesion segmentation approach 

Model Descriptions   Results/Perfor-

mance metrics 

3D Attention Guided 

Unet (AGUnet) [4] 

One AGUnet was trained for gland 

segmentation to extract the gland 

region and pass it to another 

AGUnet for lesion segmentation. 

DSC 0.82 and 

AUROC 0.85 on 

PICAI 

Mask R-CNN + 

Weakly Supervised 

Deep Neural Network 

(DNN) [17] 

A Mask R-CNN was trained to seg-

ment prostate structure and pass it 

to the DNN for the lesion detection 

and classification. 

AUROC 0.912 

and 0.882 on 

ProstateX and the 

authors’ local co-

hort 

Unet [19] One Unet was trained for gland seg-

mentation to extract the gland re-

gion and pass it to another Unet for 

lesion segmentation. 

DSC 0.87 on the 

author's internal 

dataset 

Squeeze-Excitation 
CNN (SECNN) and  
Residual Attention 
Unet (RAU-net) 
[20] 

Using SECNN to identify the pres-

ence of prostate for each slice in the 

3D volume and passing the result to 

RAU-net for lesion segmentation. 

0.860 DSC on au-

thors’ internal da-

taset 

Cascaded scoring 
CNN [21] 

Locating the ROI (prostate lesion) 

to score the dominant intraprostatic 

lesions and followed by segments 

further the lesion via a cascaded 

CNN.  

84.3% DSC on 

private dataset of 

70 patients 

While researchers have proposed multiple DL architectures for the two-step frame-

work that showed promising performance in lesion segmentation, there is a lack of sys-

tematic empirical comparison between the two-step segmentation and direct segmenta-

tion methods under the same training configuration. Additionally, the datasets used in 

these studies were extracted from different sources and may have used different data 

configurations, like 2D or 3D inputs, resolution, and stacking of different MRI 



modalities that lack a unified standard for evaluation. This gap highlights the need for 

a comprehensive comparative evaluation of two-step segmentation and direct segmen-

tation methods to determine their relative performance and practical usability using a 

standardised model, metrics, and other configurations.   

3 Methodology 

3.1 Dataset 

The dataset used in this study is Prostate158 [22]. Prostate158 is a well-maintained 

dataset of parametric 3-Tesla prostate MRI images. The dataset contains 158 independ-

ent cases, of which 139 were released as the training and validation set in [23] while 

the remaining 19 cases were released as the testing set in [24]. All Prostate158 cases 

include T2-weighted (T2W) and diffusion-weighted (DWI) images with apparent dif-

fusion coefficient (ADC) maps for the pelvic MRI sequence. Each MRI also comes 

with a pixel-wise gland mask (central zone and transitional zone) and PCa lesion mask, 

which are annotated by two board-certified radiologists with 6 and 8 years of experi-

ence in uro-oncologic imaging, that are resampled into the same orientation, direction, 

and spacing. However, in this study, the central and transitional zones are combined 

into one single class to reduce the task complexity. This approach also accounts for the 

fact that other datasets may label only the prostate gland as a whole, without distin-

guishing between the central and transitional zones, ensuring a lower effort is required 

to reproduce the same result of this study with different datasets. Figure 1 shows an 

example of an MRI slice for the Prostate158 after combining the gland classes. 

 

Fig. 1. Example of Prostate158 MRI slice 

3.2 Segmentation Workflow (ROI Lesion Segmentation) 

Initial Data Preparation - This workflow starts with the data preprocessing and aug-

mentation step. The augmentations include random rotation, random horizontal flip, 

random vertical flip, and elastic transformation. After that, each MRI and gland mask 

is resized into a shape of (256, 256) and normalised. Each 2D MRI slice will be treated 

as one sample input for the model.  

Stage 1 Gland Segmentation – The processed MRIs and gland masks will be used as 

the input for the gland segmentation model. In this step, a gland segmentation model 

will be trained until it can accurately segment the prostate gland to ensure the model 

can define a high-quality ROI for the later lesion segmentation task. The U-net model 



is selected for this stage as it is lightweight and proven to show accurate and robust 

results in organ segmentation.  

Stage 2.1 Data Preparation - With a good gland segmentation model established, this 

model will be used to generate the gland mask for the dataset. The gland masks gener-

ated will be used in the ROI extraction step, where all the gland masks will be applied 

to their corresponding MRI slices to extract the ROI prostate gland. After the ROI ex-

traction, only the remaining slices with the presence of the prostate gland will be passed 

as the input for the later lesion segmentation stage. After aligning all the extracted ROI 

MRI slices with their corresponding lesion masks, they will be passed to another pre-

processing and augmentation pipeline similar to the gland segmentation stage.  

Stage 2.2 Lesion Segmentation - This segmentation task is also a binary segmentation 

in segmenting the region affected by cancer. Models used in this step include U-net, 

DeepLabV3, TransAttUnet, and TransUNet. These models are chosen as they are flex-

ible for accepting either 2D slices or 3D volumetric MRI for flexibility. Second, the 

model chosen has relatively low computation and requirements due to having a smaller 

number of parameters, while showing an acceptable result in a task in a similar field. 

Besides, due to the automated requirements of the model, models that require human 

prompts, like SAM, are not selected for the initial experiment purposes.  

Stage 3 Evaluation and Analysis - After setting up all the segmentation experiments, 

all models will be assessed in Stage 3 for monitoring the training result and analysis. 

Figure 2 shows the diagram of the full workflow.  

 

Fig. 2. ROI Segmentation workflow 

Besides the experiment for the two-stage ROI segmentation method, another exper-

iment that performed a conventional direct lesion segmentation by using the full MRI, 

a direct lesion segmentation that does not involve the step of extracting the ROI, was 

also conducted as the control group in this study. 



3.3 Experiment Settings 

Three different loss functions are combined into a single loss function for training with 

their respective weights. The first is the Binary Cross Entropy Loss to monitor the per-

pixel accuracy of the model. The second loss function used is the Dice Loss function, 

which is used to measure the degree of overlap between the prediction and the ground 

truth mask. The third loss function used is the Focal Loss to address the issue of class 

imbalance by assigning a larger weight to the hard-to-classify instance/pixel in the data, 

since the lesion is relatively small when compared to the whole image. This combined 

loss function, equation (4), will be used for the final model training.  

𝐿𝑏𝑐𝑒 = −∑ [𝑦𝑖 log 𝑦�̂� + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)]
𝑁
𝑖=1   (1) 

𝐿𝑑𝑖𝑐𝑒 = 1 −
2∑ 𝑦𝑖𝑦�̂�

𝑁
𝑖=1 +𝜀

∑ 𝑦𝑖
𝑁
𝑖=1 +∑ 𝑦�̂�

𝑁
𝑖=1 +𝜀

 (2) 

𝐿𝑓𝑜𝑐𝑎𝑙 = −
1

𝑁
∑ [𝛼𝑦𝑖(1 − 𝑦�̂�)

𝛾 log 𝑦�̂� + 𝑦�̂�
𝛾(1 − 𝛼)(1 − 𝑦𝑖) log(1 − 𝑦�̂�)]

𝑁
𝑖=1  (3) 

𝐿 = 𝑤1𝐿𝑏𝑐𝑒 +𝑤2𝐿𝑑𝑖𝑐𝑒 +𝑤3𝐿𝑓𝑜𝑐𝑎𝑙 (4) 

Where,  

N = number of observations/pixels 

𝑦𝑖 = ground truth label of the observation, 𝑦𝑖 ∈ {0,1} 
𝑦�̂� = predicted label of the observation, 𝑦�̂� ∈ {0,1} 
𝜀 = smoothing constant, 1e-6 

𝛼 = weight for class balance,  𝛼 ∈ [0,1] 
𝛾 = focusing parameter, 𝛾 ∈ [3,5] 
𝑤1, 𝑤2, 𝑤3 = Corresponding weights for each loss function, 𝑤𝑖=1,2,3 ∈ [0,1] 

 

Considering the major aim of the project is a segmentation task, the main perfor-

mance metric to be monitored is the DSC to measure the similarity between two sets. 

It can be obtained numerically by taking twice the intersection area divided by the sum 

of each individual area. The DSC values range from 0 (no similarity) to 1 (completely 

identical). Other metrics like accuracy, recall, precision, F1-score, and AUROC are also 

monitored to record the per-pixel prediction performance of the model. 

In both experiments, all the lesion segmentation models are trained using the  

NVIDIA T4 GPU 16 GB GDDR6. The optimiser used is the Adam optimiser [25], 

initialized with a learning rate of 1×10-4 and weight decay of 1×10-5 to prevent the 

model from overshooting convergence while ensuring regularization. A ReduceL-

ROnPlateau learning rate scheduler was implemented such that it will reduce the learn-

ing rate whenever the validation DSC stops showing improvement for 5 epochs until it 

reaches the minimum learning rate of 1×10-6. The factor of learning rate reduction is 

set to 0.8, so that the learning rate is reduced in a less aggressive manner. All models 

are trained with a max epoch of 200, with a batch size of 64 for each step to leverage 

the full GPU memory of 16 GB. An EarlyStopping callback was implemented to mon-

itor the validation DSC, which will stop the training progress whenever the model stops 

improving for over 20 epochs to preventoverfitting. 



4 Results and Discussion 

For ROI segmentation, a basic U-net of five encoding layers was trained as the gland 

segmentation model. This gland segmentation model achieved a DSC of 0.9101 on the 

test set, proving its capabilities to act as the ROI extractor. The control experiment set 

was also conducted with the same training configuration as stated in the previous sec-

tion. Table 3 summarises the detailed results of the experiment.  

Table 3. Performance Metrics for the experiment 

Model Mode DSC Preci-

sion 

Recall F1 AU-

ROC 

Epoch 

U-net ROI 0.1208 0.1166 0.3733 0.1777 0.9322 79 

DeepLabV3 ROI 0.1630 0.1862 0.2357 0.2081 0.8487 87 

TransUnet ROI 0.1826 0.2534 0.3952 0.3003 0.9861 93 

TransAttUnet ROI 0.1076 0.1034 0.3191 0.1562 0.9832 73 

U-net Direct 0.0588 0.1017 0.2735 0.1778 0.8539 103 

DeepLabV3 Direct 0.0627 0.108 0.427 0.1085 0.927 104 

TransUnet Direct 0.0910 0.1264 0.2629 0.1701 0.8964 94 

TransAttUnet Direct 0.0640 0.0441 0.3901 0.0787 0.8394 88 

Table 3 indicates that, in the ROI lesion segmentation, TransUNet achieved the high-

est overall performance with a DSC of 0.1826, followed by DeepLabV3, U-net, and 

finally TransAttUnet of DSC 0.1630, 0.1208, and 0.1076, respectively. For the direct 

lesion segmentation, TransUnet achieved the highest overall performance with a DSC 

of 0.091, followed by TransAttUnet, DeepLabV3, and finally U-net of DSC 0.064, 

0.0627, and 0.0059, respectively.  

TransUNet produced the best performance in both experiment sets, acquiring a DSC 

of 0.0910 and 0.1826 in direct lesion segmentation and ROI lesion segmentation, re-

spectively. It consistently outperformed other models, highlighting the benefit of its 

hybrid encoder, which combines CNN’s local feature extraction with the transformer’s 

capacity for global context modelling [10]. Figure 3 shows the predictions of the best-

performing model (TransUNet) for each experiment set.  

 

Fig. 3. Ground truth (left), predictions ROI lesion segmentation (middle) and direct lesion seg-

mentation (right) 

However, the best-performing DSC of 0.1826 is still much lower than the original 

Prostate158’s baseline of 0.453 [26], although the baseline was trained using the 3D 

volumetrics as the input data, which might leverage the interrelated features between 



slices. Besides that, due to the focus of the study is the comparative analysis between 

two segmentation methods, hyperparameter tuning is not performed. Each model was 

initialized with the same hyperparameters, which may not be their optimal hyperparam-

eter settings. It is also important to note that the DSC in this study was computed on a 

per-batch average basis, which inherently excludes slices without any lesions. This set-

ting would omit the cases that would otherwise achieve a perfect DSC of 1.0, potentially 

lowering the overall DSC.  

From both experiment sets, it can be observed that the ROI lesion segmentation 

would improve the performance of all models under the same experiment configuration 

and hyperparameter settings. Figure 4 shows the graphical comparison of performance 

metrics between the two approaches.  

 

Fig. 4. Result for ROI lesion segmentation (top) and direct lesion segmentation (bottom) 

All models show a positive improvement in percentage change in DSC of the ROI 

segmentation relative to direct lesion segmentation, with DeepLabV3 showing the best 

improvement of 160%. These results suggest that including anatomical context through 

prior gland segmentation allows lesion segmentation models to perform better in seg-

menting prostate lesions. The percentage change of each model is shown in Table 4. 

Table 4. Percentage change of DSC in ROI lesion segmentation relative to direct lesion seg-

mentation 

Model Percentage Increased 

DeepLabV3 160.0% 

Unet 105.4% 

TransUnet 100.6% 

TransAttUnet 68.1% 



From the result, it can be inferred that the prior gland segmentation with the extrac-

tion of ROI may provide anatomical prior knowledge to the later lesion segmentation 

model by limiting its focus on relevant regions [17]. By limiting the input image to the 

prostate gland only, this approach ensures that the lesion segmentation model only 

needs to focus on adjusting its parameters to learn the feature in the relevant prostate 

gland region. It could also reduce the complexity of training and eliminate the possibil-

ity of the model learning irrelevant features (noise) outside the prostate gland [18].  

Despite the higher observed performance, there is a potential error propagation that 

might exist in this technique. In this ROI segmentation, there are two models used, 

where the lesion segmentation model is highly dependent on the gland segmentation 

model. The errors or noise learned from the gland segmentation stage might propagate 

to the later lesion segmentation model, which may cause the subsequent degradation of 

performance in lesion segmentation. This error propagation is similar to the issue faced 

in [20], where the slices that are misclassified as not containing the prostate will yield 

no lesion mask output in the segmentation model, severely affecting the quality of the 

diagnosis. Moreover, this workflow requires the training of two DL models, which may 

get too computationally intensive if dealing with a large dataset or a more complex 

model with more parameters, such as the Vision Language Model (VLM). However, if 

the clinical workflow itself requires the automated DL-based gland segmentation in the 

pipeline or there is already a robust and production-ready gland segmentation model, 

then this two-step approach may not introduce any redundant burdens to the workflow.  

5 Conclusion  

This study aimed to compare a two-step deep learning ROI lesion segmentation ap-

proach with a single-step direct lesion segmentation approach under the same configu-

rations. The result shows that the two-step ROI lesion segmentation demonstrated 

higher performance relative to the direct lesion segmentation approach with a percent-

age increase of 160.0%, 105.4%, 100.6%, and 68.1% in the models DeepLabV3, Unet, 

TransUNet, and TransAttUnet, respectively. This two-step approach produced an over-

all best-performing model of TransUNet with a DSC of 0.1826. Despite this, there are 

still potential issues, including error propagation and dependencies in performance be-

tween two models, while requiring a higher computational requirement. While the ex-

periment has proven to favour the two-step approach, the experiment was conducted 

using Prostate158, which still possesses an issue with generalizability. While valuable, 

Prostate158 consists of a relatively homogeneous set of prostate MRI images. More 

experiments are needed to examine the approach in generalising data from different 

scanners, modalities, or populations with greater anatomical and pathological variabil-

ity. For future research, this study can be extended by incorporating other well-curated 

prostate MRI datasets like the PICAI Challenge to investigate the approach's generali-

zability or using 3D volumetric MRI images for training to investigate its performance 

with 3D data and its abilities to learn features between adjacent slices. 
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